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A new adaptive finite element method for convection-dominated problems is presented. A 
special feature of the method is that it is based on a Petrov-Galerkin scheme for spatial 
approximation at a typical time-step which employs test functions chosen so that the 
approximate solution coincides with the exact solution at the nodes of finite element grid. This 
procedure makes possible the derivation of truly local a posteriori error estimates and a very 
effective solver. Numerical examples are discussed which illustrate the efficiency and effectively 
of the method. ‘E 1986 Academic Press, Inc. 

1. INTRoD~J~TIoN 

In the present paper, we present a new adaptive finite element method for con- 
vection-dominated problems in one space variable with small but constant 
viscosity. Among special features of our results, we mention the calculation of 
optimal test functions for given piecewise linear trial functions, the establishment of 
what we call “extrasuperconvergence” results for certain elliptic problems (by which 
we mean that the approximation is exact at nodal points), the establishment of 
truly local a posteriori estimates in the L’-, energy-, and LX-norms, the merger of 
the method of characteristics with special Petrov-Galerkin concepts, and 
applications to representative linear and nonlinear parabolic and hyperbolic 
problems. We mention that other adpative dinite element schemes for linear 
parabolic problems have been proposed in the important papers of Bietermann and 
Babuska [S, 6, 71 and Bietermann [4]. 

Following the Introduction, we develop a special characteristic Petrov-Galerkin 
(CPG) method for solving the linear convection dominated diffusion problem (see 
(2.1)) with a small, but constant diffusion coefficient, a. 

The method involves two steps. First, we utilize a method of charactistics and 
discretizations in time to replace the original equation by a sequence of 
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corresponding elliptic problems. Next, we develop a special Petrov-Galerkin 
method for treating the typical “elliptic step.” We make use of the concept of 

optimal test functions, as suggested by Barret and Morton [3]. While these authors 
used such functions to symmetrize nonsymmetric problems, our elliptic problem is 
symmetric from the start, so that the philosophy behind our use of optimal test 
functions is to change the norm in which the convergence of standard Bub- 
nov-Galerkin method takes place, to one which is better from a computational 
point of view. In particular, we devise new test functions which exhibit a very 
important feature: they force the coincidence of the approximate and exact 
solutions at finite element nodes. This important feature of our method allows lus ?.o 
derive truly local a posteriori error estimates and results in a very effective elliptic 
solver. 

It is known (see, e.g., Babuska and Rheinboldt [ 1,2] and Szymczak and 
Babuska [17, 181) that if nodal errors are nearly zero, local a posteriori error 
estimates can be derived which serve as a basis for effective adaptive schemes. and 
this fact is exploited in the present work. 

The success of the concept of the optimal test functions lies in the fact that they 
can be defined as linear combinations of local shape functions; i.e., shape functions 
with support contained within two adjacent elements. These localized test functions 
are very similar to those, e.g., in Szymczak and Babuska [17, IS], or Hughes [lZ], 
but the way we obtain them is quite different. 

Our combination of the method of characteristics with the adaptive 
Petrov-Galerkin scheme generalizes the works of, e.g., Pironneau [ 151, Douglas 
and Russell [lo], or Huffenus and Khaletzky [ 1 l] devoted to characteristic Brrb- 
not>-Galerkin schemes. Let us also note that the method of lines we employ is quite 
different from the classical one: first, we discretize the evolution problem with 
respect to time, and then deal with the typical elliptic step. This allows us, in par- 
ticular, to use an adaptive strategy in obtaining very good numerical solutions 

In Section 3 of this paper, issues of numerical integration and L’-instability bring 
us to a study of what we refer to as numericali~7 optimai tes: functions. More 

precisely, we study a version of our method which can be considered as a very 
special solver to the system of equations resulting from the characteristic Bub- 
nov-Galerkin method. The concept allows us to resolve difficulties connected with 
stability and turns out to provide for a very effective basis for application of our 
method to cases involving moderately small diffusion parameters E. 

The method we present is motivated by a preliminary study of compressible- 
viscous flows and as an initial step toward treating such problems, we present in 
Section 4 a study of nonlinear parabolic problems with small diffusion resulting 
from a parabolic regularization of one-dimensional hyperbolic conservation laws. 

We conclude the paper with discussions of results of numerical experiments in 
Section 5 and some final remarks in Section 6. 
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2. CONVECTION-DOMINATED LINEAR DIFFUSION PROBLEMS 
IN ONE SPACE VARIABLE-THE ADAPTIVE CHARACTERISTIC 

PETROV-GALERKIN FINITE ELEMENT METHOD 

The goal of this paper is to develop an adaptive finite element method for solving 
the following class of convection-dominated diffusion problems: 

Find u = U(X, t) such that 

z41+CUx-&u,,=f, (-? t) E (0, 1) x (0, n 

u(0, t) = a(t); u( 1, t) = b(t), t E (0, Tj, (2.1) 

24(x, 0) = ug(x), x E (0, 1). 

Here E is a “small” positive number (E < ICI ), c = c(x, t) is a given transport 
function; a(t), b(t), and uO(x) are boundary and initial data, respectively, and 
f = f(x, t) is a given source term; for the moment, all these data are assumed to be 
smooth function of their arguments. 

The discussion of our method for (2.1) is divided into four parts: 

(1) An approximation of the original problem by a series of symmetric ellip- 
tic problems by a method of characteristics. 

(2) An analysis of a typical elliptic step in the process, including in particular 
a discussion of a Petrov-Galerkin method with optimal test functions. 

(3) The development of a posteriori local error estimates and a discussion of 
an adaptive finite element procedure. 

(4) The combination of the adaptive finite element method with the method 
of characteristics resulting in the new method and the corresponding a priori error 
analysis. 

2.1. Reduction to a System of Elliptic Problems 

One common method of approximating (2.1 j is the classical “method of lines.” 
Traditionally, this method involves the construction of a finite element 
approximation with respect to the space variable X, thus turning (2.1 j into a system 
of ordinary differential equations in time, and then the solution of the system using 
any appropriate ODE solver. In our approach, we follow an opposite tack, 
approximating (2.1) first with respect to time and then analyzing the typical elliptic 
step. 

We begin by introducing a partition of interval (0, T) with nodes: 

O=t,<t,< ... <t,=T (2.2) 

and then we replace (2.1) by the following sequence of elliptic problems: 
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For each k = l,..., K, find wk(xj such that 

IV”--EAtwt,=f(x, tk)At+wk-‘(X(x? t,; tkpijj, 

M’“(0) = a( tk), M’h-( 1 ) = b(P). 
(2.3) 

Were At=At,=tk-tkpL, bvkpl = W(X, (k- 1) At) for k> 1 and tirkP i = U&X) for 
k = 1, and X(X, t,; .) is the characteristic line drawn backward in time the point 
(x, tkj. More precisely, X(x, t) is the solution of the ordinary differential equation: 

dX 
-= c(X, T), 
dr 

X(t) =x. 
(2.4) 

If c(s, t) is continuous and Lipschitz continuous with respect to X, then such 
characteristic lines exist for every time r and one and only one characteristic passes 
through each point (x, t). 

In implementing (2.3). we shall view it as a fractional-step method of the type: 

D,,,,k-(l;?l 

Dt 
= 0, 

(2.5) 

where D/Dt is the (absolute) derivative in the direction of the characteristic line. 
Thus, the solution at the conclusion of a time-step is computed as the sum of a pure 
convection component and a diffusive part. 

Remark 2.1. Note that the source term in (2.5) is first switched off and then 
applied in its entirety only at the diffusion step. An opposite scheme would result if 
we had replaced the homogeneous pure convection step (resulting in (2.5 jl I by the 
inhomogeneous equation, 

In such a case, the solution r+lk ~~ (r”)(x) = \ck ~ ‘(X(X. t,: t,- 1 )) would have to be 

i 

replaced by the function: 

IV~-(~~~‘(.X) = IV’- ‘(X(x, tk; t,- 1)) + i“’ f(X(x, t,; T)~ T) AT. 
fk - ! 

(2.7 

This would result in an algorithm of the form (2.3) with j(s, tk) At replaced by 

s Q j-(X(X, tk; T), T) dT. (2.5 
Ik- L 
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Clearly, these two schemes coincide only when f is independent of time and c E 0. 
An alternative might be to split f into two parts. each contributing to one or 
the other fractional steps. Such decompositions are often impossible or, at best, 
impractical, and we shall follow Pironneau [lS] and employ the first “convective- 
diffusion” scheme. 

2.2. Bubnov and Petrov-Galerkitz Finite Element Methods for the Elliptic Problem 

Before we turn to a study of the elliptic problem (2.3), we record some standard 
results concerning the classical finite element method applied to the simplest elliptic 
problem: 

Find U: (0, 1) N R such that 

-u,=f in (0, l), 

u(O)=a, u(l)=b, 

where u,, = du(x)/d,?. The corresponding variational formulation is: 
Find u E H’(0, 1) such that 

(2.9) 

s 

1 

u,v, d-y = s ’ fv dx, vu E Hh( 0, I), 
0 0 (2.10) 

u(O) = a, u(l)=b. 

Here H’ and HA are the usual Sobolev spaces and boundary condition (2.10)2 is 
meaningful due to the embedding H’(0, 1) 4 C”( [0, 11). 

The standard Bubnov-Galerkin finite element method with Co-piecewise linear 
approximation can be introduced as follows: 

Given a subdivision, 

o=x,<x,< ... <XN-, <xN= 1 (2.11) 

we associate with each node .)ci a global basis function ei defined setting: 

-*i x,=0 in (xi-r, xi), i = l,..., N, 

lj;(xJ = 6,. 
(2.12) 

Such a standard “hat function” is shown in Fig. 1. 
By replacing u and v in (2.10) by linear combinations of r/i we arrive at the stan- 

dard Bubnov-Galerkin finite element approximation: 
Find uh = Cy=“=, u&i such that 

s 

1 

uhxvhx dx = f’ full dx, 
N-l 

vvlz = C L’i$i7 
0 0 i=l 

(2.13) 

u. = a, uN = b (vi = v,,(xJ). 
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x .z. 1‘. * 
i-l < C+l 

FIG. 1. Standard hat function I+!I; is the solution of the boundary-value probiem (3.4! 

Let us denote by V,, the finite-dimensional subspace of HA(O, I) spanned by $,? 
i=l ,‘.., N - 1 and by M, its afline translation containing functions which satisfy the 
boundary conditions (2.13),. By subtracting (2.13) from (2.10) we get the usual 
condition of orthogonality of the error to Vr,, 

Orthogonality condition (2.14) has two immediate, very important consequences. It 
yields the optimal error estimate (with unit constant ): 

where 11. /I is the “natural” energy norm, 

and it provides extra-super convergence at nodes: 

z4j = u(.xJ (2.16) 

i.e., the finite element approximation coincides with the exact solution at the nodes! 
(cf. Strang and Fix [14]). 

Returning now to the elliptic step (2.3), we shall now study the following, slightly 
more complicated elliptic problem: 

Find 24: (0, 1) I--, R such that 

-&EU,,+z4=f, E > 0, 
(2.i?) 

z4( 0) = a, u(l)=& 

In this problem, E may represent the product E At in (2.3) andfrepresents the right- 
hand side in (2.3). Problem (2.17) admits the variational formulation: 
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Find u E H’(0, 1) such that 

s 

1 

vu E I$)( 0, 1 ), 
0 s 

1 

EU, u, dx + 
0 

uv dk = o1 ji dx, 
s 

u(0) = a, u(l)=b. 
(2.18) 

By the application of the standard Bubnov-Galerkin finite element method 
approximation of (2.18) using piecewise linear functions and using the same 
arguments as before, we again arrive at an orthogonality condition for the error: 

dx+ ’ (u-uh)vhdx=O, j vu, E v,. (2.19) 
0 

Again, (2.19) yields an optimal error estimate, but this time in the different energy 
norm: 

Ilull2,=~ jol u;ddx+ jol u’dx. (2.20) 

However, a superconvergence result of the type (2.16) does not hold. 
We note that now the energy norm (2.20) consists of basically an L2-part and a 

small (E is implicitly considered to be small) contribution of the H’-seminorm. In 
other words, we approach the exact solution at an optimal rate (2.15) but with 
respect to a nonoptimal choice of a norm. In particular, for cases in which the exact 
solution u exhibits sharp shock-like transitions, this L*-type behavior may promote 
spurious oscillatory behavior in the approximation near such transition regions 
(wiggles) in much the same manner as Gibbs phenomena in L’-Fourier analysis. 
The major question we face at this point is how to avoid these numerical difficulties. 

First, we note that the orthogonality condition (2.19) will still be satisfied if we 
use test functions di that are different than the hat functions ei. Let us denote such 
a new space of test functions of VA. Then we obtain the Petrov-Galerkin 
approximation of (2.18 ): 

Find uh E M, such that 

.I 
E J uh.r z?,,~ dx + w, E Ph 

0 J‘ 
: uh v^,, dx = j1 ffih d.v, 

0 

with the corresponding new orthogonality condition, 

& j; (u - ~4~)~ z?~.~ dx + j; (u - uh) 6,, d,x = 0, vo, E Ph. 

(2.21) 

(2.22) 

Next for each trial function ei, i= l,..., N- 1, we follow the plan of Barret and 
Morton [l] and define the “optimal” test functions fi: by solving the problem: 
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Find fi) E Hh(O, 1) such that 

where tii are, again, the hat functions. Before we turn to a deeper study of these so- 
called optimal test functions @, we take note of the remarkable impact they have on 
the character of our error estimate: By replacing 4 by the error u - uh in (2.23) we 
get 

s 
’ (u-uuh)x$ixd.x=O, i= l,..., N- 1, Q$i, (2.24 i 

0 

which is recognized as our earlier orthogonality condition (2.14). From this fact 
follow two important properties: (1) an optimal error estimate can now be obtained 
in a nice norm (particularly one independent of E), and (2) we obtain an 
approximation which takes on exact values at the nodes x,. 

We also note that the optimal test functions are not important in themselves, but 
rather it is the space they span that is crucial. In particular, the test functions 
resulting from (2.23) are not local and, therefore, their use in a finite element 
scheme is of limited practical value. It is, thus, desirable to replace 6; by other 
functions, possibly with compact supports, which may either approximate the ideal 
tif well enough or span exactly the space same ph. 

Toward this end, we define new locai test functions di, i= 1 
auxiliary problems, 

-4i.n+4izo in (xi- i, x,), i = I,..., N- 1, 

qQu,) = 6,, j = O,..., N. 

The following is true: 

span{fjj]r:;’ = Vh 2’ span{rif;?-,l. 

N- 1, by the 

(2.35) 

(2.26) 

Due to the equal dimensions of spaces Vh and P,, it is sufficient to show the 
inclusion of 1’, in the left-hand side. Omitting the mesh label h for the moment, let 
Ci denote the optimal (global) test function defined by (2.23) and by v”( its inter- 
polation of nodes xi, i= l,..., N - 1, obtained using the local test functions di, of 
(2.25); i.e., ii = Cj t?{4j(x), ii = Ci(.xj), 1 < i, j < N- 1. Denoting by 1~ the dif- 
ference H!(X) = Cj(x) - ii(x), we have 

581/67.‘1-13 
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X X X X X X 
K-l K K+l K-l K K+l 

FIG. 2. Trial and optimal test functions. 

from which w = 0 follows. In this calculation we have used the fact that both 6, and 
4, satisfy the same homogeneous equation inside every element, $i from definition 
(2.25) and G, from (2.23) due to the fact that lcli satisfy (2.12)! 

The functions tii and bi are shown in Fig. 2. 
In summary, we have developed a strategy for a new class of Petrov-Galerkin 

finite element methods for (2.17) which exhibit both the optimal-type error estimate 
(2.15) independent of E and the superconvergence property (2.16) at nodes. While 
generalizations to multidimensional cases are not straightforward, they are possible 
and we plan to report some progress in this direction in a later paper. 

An Adaptive Petrov-Galerkin Method in One Dimension. Every adaptive finite 
element method involves two basic steps: 

(1) an a posteriori error estimate 
(2) a mesh refinement or enrichment technique. 

Virtually all of the a posteriori error estimates used in adaptive schemes proposed 
in the literature are global in nature, a fact which, nevertheless, has not prevented 
their use as a basis for local mesh refinements. Contrary to such procedures, the 
extra-superconvergence result (2.16) allows us to calculate focal error estimates. 

Let K= (xk~- r, xk) be the interior of a typical finite element and let eh = u - u,~ 
denote the error in the finite element solution. Several local a posteriori error 
estimates are possible. To derive them, we note that for the model problem (2.17) 
the error is a solution of the following local boundary value problem: 

-.se!Jx+eh=f -uh inK, 

eh(x,- I) = eh(xk) = 0, 
(2.28) 

where .f - &, is the local element residual. The operator L$ = -E@,, + t,lj appearing 
in (2.28) is self-adjoint in L’(K) and admits a spectral decomposition of the form 

LV = -EV,, + V = -f Vi++bi, (2.29) 
i= 1 

where the eigenvalues ili = 1 + (z’i%/h’) form an increasing sequence of real num- 
bers, $i=cisin(Jm(x-x,-,)) are the corresponding eigenfunctions which 
forms an orthonormal basis in L2(K) (with constants ci chosen so that [~$J.z = l), 
h =xk-xk- 1 is the mesh size, and vi are coefficients of the decomposition of a 
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function v with respect to the basis tii, i.e., v = C;?: I ni$;. The three norms of major 
interest associated with L are 

i= 1 

Henceforth we shall assume that f~ L’(K) so that l\Lvli L~cK) in (2.3Oj is com- 
putable for v = eh and, in fact, this norm is simply the L2-norm of the residual, 

f’- uh, in (2.30),. By the direct comparison of the norms, we obtain the following 
local a posteriori error estimates: 

kh =.f- u,), 

(2.31) 

We emphasize that both of these error estimates are optimal in the sense that there 
exist functions 4 for which the equalities hold. 

For further development of the method, we will also need estimates in the 
Lx-norm, which can be bounded by the energy norm (2.30j2 using the estimate 

u(x) = jx u, dx (u(x/;- I) = 0) 
Xk-l 

j 1:2 

<- 0 E 
II4 E. 

Thus, combining this result with (2.31),, we obtain 

(2.32) 

(2.33 j 

With this estimate in hand, we now proceed to the second aspect of the mesh 
refinement technique. Here we propose to use the simplest h-method in its biscc- 
tionai version. The strategy is outlined as follows: 

(1) Choose an initial mesh and solve the system of equations resulting from 
the Petrov-Galerkin method. 
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(2) Using estimate (2.33) with a given error tolerance TOL, determine which 
of the elements need a refinement ( /lehll Lm(K, 3 TOL). 

(3) Bisect all elements for which the error estimate exceeds the tolerance. 
(4) For each of the subdivided elements, solve the local problem (2.17) (using 

the PetrovGalerkin methods locally) with the known nodal values imposed as 
local boundary conditions. 

(5) Using estimate (2.33), again determine which of the new elements need 
further refinement. 

(6) If elements exist for which /lehlj Lm(Kj 2 TOL, bisect them and go to step 
(4); otherwise, if llehll La(Kj < TOL for all elements k, stop the process. 

Obviously, other error norms such as those in (2.31) could be used in this 
refinement strategy. It is important to note that only one equation with one 
unknown need be solved for the addition of each new nodal point; it is not 
necessary to resolve the problem globally on the full mesh with each refinement. 

2.4. The Characteristic Adaptive Petrov-Galerkin Method 

Once again, let V,, denote the finite-dimensional space of finite element trial 
functions spanned by the usual piecewise linear hat functions ei and let fh denote 
the space of optimal test functions corresponding to V,. Because our scheme is to 
be adaptive, the dimension of V, (and phi,, will generally change at each time step; 
and test functions iYh in fh are chosen so that 

s 
’ (&h@);,+ w”ti; + w”v;) dx = 1’ ,+I;~ dx, VWkE v. (2.34) 

0 0 

Our Characteristic PetrovGalerkin (CPG) Method is defined by the following 
system of discrete problems: 

Find W;(X) s V,, c H’(0, 1) such that 

=Atjb~(x,t~)dhdx+j-1w:;-1(Xh(X,t~;t~-~))Lih(X)dx, VG, E &,, (2.35) 
0 

w;(O) = a( tk), wf( 1) = b( t,); 

wz-’ being the approximate solution at the previous time-step if k > 1 and the 
initial data u. if k = 1. 

In the above equations, xh(X, tk; tkl) iS an approximate characteristic drawn 
backward in the time from the point (x, tk) and usually obtained by replacing the 
coefficient c(x, t) in (2.12) by a suitable approximation ch. Replacing, for instance, 
c(x, t) by a function piecewise constant both with respect to space an time, X,, 
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becomes a “broken”, piecewise-linear line. For the estimates evaluating the dif- 
ference between the solutions of the previous time step along the exact charac- 
teristic and its approximate, we refer to Pironneau [ 131. 

L”-Error Estimates. To estimate the error inherent in the approximation 
scheme (2.35), we first introduce a set of functions zk = zk(x) which represents exact 
solutions of the discrete elliptic system; i.e., z k is a solution of the problem: 

Find zk = z”(x) such that 

Clearly, 

zk-& dt z:,=f(x, rk) dt + ““~-‘(xk(x, tk; tkp L)), 

z”(0) = a( I”), zk( 1) = b(tk). 
(2.36: 

I/Uk- u.%“(O,l, d lIUk -zkllF(O,I) + lIZk - \+‘:I/ L”(O,l)> (2.37) 

where u”(x) = u(x, tk) is the value of exact solution u evaluated at time t,. The 
second term on the right-hand of (2.37) results solely from the approximation with 
respect to x, and, by use of our adaptive scheme, can be made arbitrarily small. Let 
us denote it by 

liZk - 1$':1/ L=(O.l)= pk. (2.38) 

While the integrals appearing in (2.35) are always evaluated using numerical 
integration procedures, we shall not include in the present analysis a study of errors 
produces by such numerical quadratures. 

To estimate the first term in (2.37), we first introduce the truncation error al.ong 
the approximated characteristic line X,, 

-e”(?c)=(u,+cu,)(x, t,)-~(~k(~~)-uk-‘(x,(x, lk;tk-1)). 

Subtracting (2.36) from (2.35) we obtain 

w-hich, by a maximum-principle argument, implies 

jl Uk - Zkl( rD(o.l)< II~k-l-~~~~-lIiL=~O.l~+ ll~kllr~co,l)r~~. 

When combined with (2.37), the last result gives: 

/I ilk - tv;ll L”,O,J) < /I Uk - I + IV; - ’ // L”(O,1) 

+ Ileklll~~~O.l~ dt+h. 

(2.39) 

(2.40) 

(2.41) 

(2.42) 
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Applying (2.42) recursively over every time-step, we arrive at the estimate 

where ~=max,~jSk~j. 
Finally, arguments similar to those in Douglas and Russell [8] show that 

IldlL~(O,l)~C f&J 
(I II 

At, 
Lm((o,l) x (0.T)) 

where d/ar denotes the derivative along the approximated characteristic line. 
Using (2.44), we obtain finally 

At+kp. 
r=(o,l) 

(2.44) 

Remark 2.2. (1) By introducing the truncation error along the approximate 
characteristic lines, we have avoided the use of an estimate involving the difference 
between the exact characteristic and its approximate (refer to Pironneau [15]). For 
a piecewise constant approximation ch of c both with respect to time and space 
variables, the approximate characteristic is rectilinear and the truncation error 
(2.39 j is exactly the same as in Douglas and Russell [lo]. One can, of course, insist 
on defining the truncation error along the exact characteristic (2.4) which will result 
in extra terms in the final estimate. Such a procedure is only partially justified since 
u finally is a solution to the parabolic problem and not a hyperbolic problem and, 
therefore, is not constant along characteristic lines. On the other hand, we always 
expect the variation of u along either the real or approximate characteristics to be 
small if G is small and, indeed, this property is crucial to the success of the method. 

(2) Estimate (2.45) indicates that the tolerance p that one may specify for a 
given problem should be reflected in the choice of the number k of time steps; the 
error is bounded by the product kp, so the larger the k, the smaller the value of p 
that should be specified. 

(3) Use of a Petrov-Galerkin scheme instead of a Bubnov-Galerkin approch 
may result in the loss of L2-stability (basically one cannot introduce )vi into (2.35) 
as a special choice for a test function since it does not belong to the space of test 
functions. An La-stable scheme would require the use of a discrete maximum prin- 
ciple which would have to take into account specific integration formulas being 
used. In the next section, we propose an alternative technique which practically 
solves this problem-the idea of numerically optimal test functions. 

3. AN ALTERNATIVE TECHNIQLJE-NUMERICALLY OPTIMAL TEST FUNCTIONS 

In theory, the standard Bubnov-Galerkin method can be used to solve convec- 
tion-dominated parabolic problems such as (2.1) provided a very tine mesh is used. 
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I - “active” nodes-endpoints 
of finite elements 

.- integration points 

FIG. 3. Illustration of a constant set of integration points. 

For instance, it is well known that the Bubnov-Galerkin method combined with 
the method of characteristics applied to (2.1) can yield good results when the mesh 
size h, is of the same order as the “viscosity” constant t;. For c = 0.001, this suggests 
that one might need 1000 elements to produce reasonable numerical solutions to 
(2.1): the high computational effort can be avoided by using a special adaptive 
solver resulting from the Petrov- Galerkin method discussed in the previous section. 

The concept of numerically optimal test functions we present in this section is a 
straightforward generalization of the method presented previously in which 
integrals appearing in the load equation are evaluated by numerical quadratures 
over a fixed set of integration points. The idea is to introduce at the onset a fixed 
uniformly distributed set of integration points and a corresponding trapezoidal 
integration rule. When adaptive process proceeds, the location of integration points 
remain unchanged and therefore smaller elements will contain a smaller number of 
integration points (see Fig. 3). 

The integration points define an acceptable tine-mesh Bubnov -Galerkin 
approximation of the elliptic problem. Introducing a “large” but finite-dimensional 
subspace W of H’(0, 1) corresponding to the fine-mesh finite element grid, WC 
accept the following “semi-exact” solution of the following model problem: 

Find U E W such that 

f3.i) 

In the above, .f can be identified with its L2-projection onto W or with its intcr- 
polant at integration points. Thus, neglecting the difference between the exact 
solution u and its line-mesh approximation U we shall try to develop a method 
whose ultimate goal is to reproduce u using the ideas presented in the preceding 
section. 

Toward this end, we start with a much smaller subspace of W, say I;,, and 
intend to soive (3.1) with a Petrov Galerkin method of the form: 

Find U,,E V, such that 

s 

1 1 

uhfihdx+E 
0 I 0 

uhxfihx dx = o’ jiih dx, i’ V6h E I&. (3.4 

Here the 8, denote optimal test functions, spanning ?h but this time being taken 
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from the large finite space W instead of HA. It is easily seen that all the ideas dis- 
cussed in the previous sections are perfectly adaptive to this finite-dimensional case. 
The critical point is that the optimal test functions in this finite-dimensional case, 
which we refer to as the numerically optimal test functions, are not interpolants of 
the continuous optimal test functions, and therefore different results for both types 
of test functions are expected. 

Following the plan of Section 2 and 3, we now record the basic results in the con- 
text of the finite dimensional space W. 

Definition of optimal test function fib : 
Find iYh E W, such that 

Orthogonality condition (U E W): 

I l (U - uJx vhx dx = 0, VVh E v,. 
0 

(3.3) 

(3.4) 

Optimal error estimate (ii E W): 

~(u-uu,llH’(o,l,~ Il~-vhllff’~o,l)~ vu, E If,. (3.5) 

The “extra-superconvergence” result (U E W): 

ii = l.4h at nodes. (3.6) 

Definition of local numerically optimal test functions: 

and 

the localization result: 

Ph = span{tii]. 

Even error estimate (2.33) has its discrete counterpart: 

(3.7) 

(3.8) 

(3.9) 
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where ?A is the error between “semi-exact” and approximate solutions t?, = U - uA, 
and L is a matrix associated with the system of equations resulting from 

J 
* .Xk 

e,,vdx+E ehxv, dx = 
x-, I I- L (f - 14h ) u d-v, vv E w, V(Xk ~ 1 j = V(Xk) = 0: 

(3.10) 

and AI denotes the smallest eigenvalue of L which, this time, must be evaluated 
numerically. 

Remark 3.1. 

(1) The two norms in (3.9) are defined on the finite dimensional space W 
where any two norms are equivalent and therefore the constant in estimate (3.9) 
can be evaluated directly by solving a corresponding minimization problem. 

(2) The discrete form of our method discussed here for one-dimensional 
problems can be generalized to multidimensional problems in a straightforward 
manner. We hope to report some extensions to two-dimensional cases an a 
forthcoming paper. 

(3) In estimate (3.9 j, f is to be identified with its Li-projection onto W or its 
interpolant at integration points. 

Returning to problem (3.1), our discrete method with numerically optimal test 
functions leads to the following scheme for the diffusion step in our algorithm for 
convection-diffusion problems: 

For k = 1, 2,..., K, find ~1; E krh c W such that 

=At~~f(r,)6,dx+~1n~:~L(Xh(s,t,;t,~,j)l;,dx, (3.11) 
0 

w,, E I& c w, 

w;(o) = a( tk), 1vi( 1) = b( t”). 

Due to the adaptive character of the method, both V, and p),, here may change at 
every time-step, but both remain subspaces of the larger space W. 

We will not reproduce here error estimates for the standard Bubnov-Galerkin 
method combined with the method of characteristics (see Pironneau [IS], or 
Douglas and Russell [lo]). We note that by using our adaptive technique with 
numerically optimal test functions we can reproduce the standard Bubnov- 
Galerkin results with a given, arbitrary small tolerance ~1 possibly saving in this 
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way many unnecessary degrees of freedom and never solving large systems of 
equations. Indeed, the bisecting solution technique involves the solution of only one 
equation for each local problem. With sufficiently small ,u, we may activate all 
nodes this recovering the “semi-exact” solution on the line mesh. Thus the method 
can be interpreted as a very special and effective solver of the implicit diffusion step 
in the standard Bubnov-Galerkin method for possibly very large systems of 
equations. 

There are several other advantages of such an approach. The source term f(tk) 
on the right-hand side in (3.11) need be evaluated only once (due to the fact that 
number and location of the integration points remain unchanged); for a uniform 
distribution of points, the method can be directly compared with finite difference 
techniques (a useful feature in studying hyperbolic problems in the next section) 
and, finally, the concept results in an L2-stable scheme. 

To confirm this last assertion, let us denote by uk the semi-exact solution to (2.1) 
obtained with the tine-mesh Bubnov-Galerkin method. Assuming that the method 
is L2-stable (refer to Pironneau [ 15]), one has for f E 0, 

IIUkllL~(O,l) d II~k-lIIL~(o,l). (3.12) 

Denoting by zk solution of a typical time-step but with initial data HJ~-’ chosen 
instead of uk-‘, from the L2-stability and linearity of the problem follows also that 

IIUk- zq L2(0,1)< Il~~-llIL’,o,I,. (3.13 j 

Thus. 

II”k- “‘:Ih(O,l) 6 bk-&*(O,l) + Ilzk+ “;IiL2(0,1) 

(3.14) 

When applied recursively at every time step yields, we get 

II ~2 - dll ~qo,l) 6 b. (3.15) 

It follows that for a given number of time-steps, we may choose p small enough to 
recover the semi-exact solution with a required tolerance. 

Finally, we note that our scheme is “almost” L”-stable, since (3.12) yields: 

llw~ll L2(0,1) d IIwt - 4 L+O,l) + llz~ll L2j0,1) 

</A+ IIw-qL?. (3.16) 

Numerical experiments discussed in Section 6 confirm the step-wise stability 
estimate (3.16). Since the discrete version of the method is L’-stable in this sense, it 
may be desirable to replace (3.9) by a local L’-estimate. 
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4. APPLICATION TO CERTAIN NONLINEAR HYPERBOLIC PROBLEMS 

In general, only distributional solutions of nonlinear hyperbolic problems may 
exist for all t > 0, and these solutions may not be uniquely determined by the initia! 
data (see, e.g., Lax [13]). One thus seeks to determine which of these distributional 
solutions is physically reasonable, in the sense that it corresponds to a positive 
production of entropy across of discontinuity of the solution. Such “entropy 
solutions” are uniquely determined by the initial conditions for the scalar one- 
dimensional case, and they are usually identified with limits of dissipative solutions 
of a parabolic regularization of the given hyperbolic problem as the dissipation 
tends to zero. Thus, to obtain entropy solutions of the nonlinear hyperbolic 
problem of the type 

u,+cr(u),=O, XE 52, t>o, 

u(x, 0) = u&). 

Where the flux a(u) is a nonlinear function of U, it is customary to consider a 
related parabolic problem, such as 

u;+o(u"),-&UE,,=0, XE 62, E>O: 

UE(S, 0) = Id&), 

and to achieve an entropy solution u to (4.1) as a limit U’ -+ U, in some sense, as 
E -+ 0. 

With these ideas in mind, we consider the following nonlinear parabolic problem: 
Find u = U(S, t) such that 

14, + du), - %, = 0, o<x<q, t>o, 

~(0, tj=a(tj, ~(1, t)=b(tj, t 2 0, (4.3) 

u(x, 0) = q)(x). 

Conceivably, by applying our CGP-method to (4.3) and taking E sufficiently smal. 
we could arrive at reasonable numerical solutions to certain classes of nonlinear 
hyperbolic problems. 

Toward this end, we consider once again Petrov-Galerkin approximations of 
elliptic systems: 

Find IV~(X)E V,l such that 

wf(O) = 4t,j, i$(l)=b(tkj. 
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FIG. 4. Construction of characteristics. 

The essential difference between this case and that discussed previously is that the 
characteristic lines are now solution-dependent. 

With the fractional step method-notation in use, we may split (4.4) into two 
steps: 

Transport: 

w; ~ 1’2(x) = wf-l(xh(x, tk; tk- ,I). (4.5) 

Diffusion: 

f 

1 

I 

I 

w;&,dx+E At wtx fihx dx = ’ w; - 1’26hX dx, vl?, E P,,,, 
0 0 s 0 

(4.6) 
l+‘;(o) = a( tk), \V;(l)=b(fk). 

Several schemes for constructing approximate characteristic lines suggest them- 
selves. We continue to empIoy the numerically optimal test functions and, for sim- 
plicity, we shall approximate characteristic by straight lines within each time step 
(Fig. 4). Of course, in the pure hyperbolic case the characteristic lines are, in fact, 
straight lines, so that for small E this linear approximation seems to be a reasonable 
way to approximate the transport step in the algorithm. This is contrary to the use 
of the method of characteristics in the context of Navier-Stokes equations (see, e.g., 
Huffenus and Khaletzky [ 1 1 ] ), where, with higher order Runge-Kutta procedures 
in use, the characteristics are never rectilinear, even for small E. 

By constructing characteristic lines backward in time at every integration point, 
we arrive at the method illustrated in Fig. 4. Suppressing the h index for clarity, we 
have, 

1°F - l/2 = I { 
wf ~ ’ - ACi( w; - ’ - we--,‘, if c,>O 
wf - l - Ic,( MI;;; - w; - 1) if c;BO, (4.7) 

where 1= At/Ax, and ci characterize the slope of characteristics. These slopes can 
be calculated in three ways. Denoting A(u) = G’(U), we may use: 

Explicit scheme: 

c,=A(z4-1). (4.8) 
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Semi-implicit scheme: 

F&y-implicit scheme; 

c; = A@- Ii*). (4.9) 

ci = A($). (4.10) 

Scheme (4.9) is referred to as semi-implicit scheme since, upon substituting it to 
(4.7j, one can still solve (4.7) explicitly for ni - lk I’*. Only the last fully implicit 
scheme couples the two fractional steps of our method and results in a nonlinear 
scheme requiring extra iterations. Without going into algebraic details, we record 
some simple observations: 

(lj The requirement that characteristic lines should never exceed the 
neighboring “cell,” results in the limitation of the time step in the form of the usual 
CFL-condition. 

(2) Both schemes (4.8) and (4.9) are monotone (see, e.g., Crandall and 
Majda [8]) under some additional limitations on time-step A?, with much weaker 
limitations needed in the case of the semi-implicit scheme. 

(3 j None of the schemes is in a conservation form. 

In our numerical experiments, we have restricted ourselves to the implicit schemes. 
Finally, we note that it is not difficult to derive error estimates for these 

schemes similar to those in Douglas and Russel [lo]. However, since such 
estimates would reflect more the parabolic than the hyperbolic nature of the 
problem, their applicability to the problem seems to be of questionable value. 

5. NUMERICAL EXPERIMENTS 

5.1. Some Computational Details 

We shall now describe the results of several numerical experiments performed 
using our method. All results were obtained using the notion of “numerically” 
optimal test functions discussed in Section 3. 

W7e shall assume that the integration points are fixed, uniformly distributed and 
that the integration is performed by using the simplest trapezoid formula. The total 
number of integration points is chosen in such a way that the corresponding hne- 
mesh distance is of the range of the constant assumed in all the examples 

Suppose now that we start with a uniform mesh of n elements and a predicted 
maximum number of mesh refinements (bisections) equal k. Since the smallest 
elements must have at least two integration points (which coincide with their 
endpoints) the number of integration points is: 

N=n2k+ 1. (5.1) 
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If k is equal, for instance, to 6 in the mesh refinement procedure, we deal with 
elements consisting of 65, 33, 7, 9, 5, 3, and finally 2 integration points. For each of 
such elements the corresponding minimal eigenvalues (recall (3.9)) necessary for 
error estimates and numerically optimal test functions are determined just once, 
before running the program, which is possible under the assumption that time step 
At is constant. The stored eigenvalues and test functions are then used at every time 
step. 

5.2. Model Elliptic Problem 

As a test of our elliptic solver, problem (2.17) is solved with a right-hand side f 
and boundary conditions corresponding to the following exact solution: 

u(x)= -exp(--x)-exp[(l+s)(x-l)/E]+(A--)X-A (5.2) 

with constants A and B chosen so that 

u(0) = u( 1) = 0. (5.3) 

For small E, the solution (5.2) possesses a thin boundary-layer near x = 1. The 
numerical data have been chosen as follows: 

Number of integration points N= 10. 26 + 1, 

E = 0.01, 

Leo-error tolerance TOL = 0.0001. 

Figure 5 presents both numerical and exact solutions (with the scale used they 
are indistinguishable) and the resulting optimal finite element mesh for 50 elements. 

FIG. 5. Model elliptic problem-solution and the optimal finite element mesh. 
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FIG. 6. Convection-dominated problem-solution and the mesh at t = 0.15. 

5.3. Convection-dominated Parabolic Equation 

As a test for the convection-diffusion scheme for problem (2.1). we follow Donea 
et al. [9] and consider a problem for which the soiution is a Gaussian profile trans- 
lating and spreading in time of the form 

u(x, t) = (2Et)-li2 exp[ - (x - t‘)2/4et], (5.5) 

where t= t + 0.4 with a variable advection velocity, 

c(x, t)=2[tan-‘(x-x,)/n][l -exp(-(t+0.2)/0.2)]. (5.6, 

Since u is the exact solution for x = 1 the source term has to be calculated as 
fix, t) = [c(x, t) - I] u,(x, t). The numerical data are as follows: 

Number of integration points N = 10. 26 + 1, 

E = 0.002, 

tolerance TOL = 0.001, 

time-step At = 0.0015, 

x() = 0.5, 

FIG. 7. 

I I I / lltlllllI 1111111111 

Convection-dominated problem-solution and the mesh at = 0.45. 
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Figures 6 and 7 illustrate both the exact solution and the calculated solution at 
times t=0.15 (after 100 iterations) and t =0.45 (after 300 iterations). Three hun- 
dred time steps were calculated. The characteristics are approximated by broken 
lines (which corresponds to the approximation of function c by piecewise constant 
functions, both with respect to space and time variables) and with the At chosen so 
that they never exceed a neighboring cell. A larger choice of At results in the 
approximation of characteristics by broken lines identical with those described, e.g., 
in Pironneau [ 151, which according to our experiments, produces a deterioration 
in the quality of the solution, especially in the case of very irregular solutions. In 
our particular formulation, it is not necessarily computationally efficient to use 
large time-steps since the approximation of characteristic lines over large time-steps 
may be expensive. 

5.4. Biirger’s Equation-Regular Solution 

As a final problem, we consider the Burger’s equation 

u, = ( $u2)x - EU,, = 0 (5.8) 

with the boundary and initial data corresponding to the exact N-wave solution (see 
Lohar and Jain [14]), 

24(x, t) = 
X/i- 

1 + exp(x2/4sfl(t;it0)l/*” 

where t= t + 1. Following Lohar and Jain [ 141, we choose 

t, = exp( l/8&). 

The remaining numerical data are as follows: 

Number of integration points N= 10. 26 + 1, 

& = 0.01, 

tolerance TOL = 0.00005, 

time-step d t = 0.0015. 

FIG. 8. Biirgers’ equation-N-wave solution at t = 0.15. 

(5.9) 

(5.10) 
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FIG. 9. Biirgers’ equation-N-wave solution at f = 1.5 

Numerical results are presented in Figs. 8 and 9, for times I = 0.15 and t = 1.5 where 
numerical results are seen to be indistinguishable from the exact solution. At t = 1.5. 
after 1000 iterations, a slightly overdiffusive character of the approximation emerges 
as a result of numerical dissipation. In the program used in these calculations, the 
fully implicit construction of characteristics (recall (4.8)), required a maximum of 
three extra iterations per time-step for a level of convergence defined by the same 
tolerance, TOL. The semi-implicit scheme gives, within the range of 1000 steps con- 
sidered, results indistinguishable for the exact solution. The total number of 
elements varies with time but never exceeded 240 elements. Of course, by setting a 
large tolerance we get a smaller number of elements, but the quality of the solution 
may deteriorate due to the discrete stability property characterized by (3.16). 

5.5. Biirger’s Equation-Discontinuous Solution 

We conclude our numerical examples with an analysis of Eq. (5.8), this time with 
boundary and initial data corresponding to the solution: 

if x < 0.4 + 03 
otherwise. 

(5.11) 

Solution (5.11) is discontinuous and independent of E and is only formally a 
solution to (5.8). In fact, (5.11) is a classical shocklike solution to (5.8) but with 
I: = 0: the so-called Riemann problem (see, e.g., Lax [ 131). Therefore only for small 

I I I I I /III I I I J 

FIG. 10. Biirgers’ equation-shock at : = 0.15. 

581/67/l-14 
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FIG. 11. Biirgers' equation-shock at t = 0.75. 

E’S (recall the remarks at the beginning of Sect. 3) can we expect a numerical 
solution to approach the exact one at a reasonable rate. With numerical data 
chosen as: 

Number of integration points N= 10.2’j -f 1, 

F = 0.0015, 

tolerance TOL = 0.00005, 

time-step At = 0.0015, 

the numerical results at t = 0.15 and t = 0.75 are those presented in Figs. 10 and 11. 
As one can see, the numerical shock travels with a slightly greater velocity than the 
exact solution. 

6. CONCLUDING COMMENTS 

As will be shown in subsequent work, there are many problems this paper leaves 
unsolved. The concept of numerically optimal test functions makes it possible to 
generalize most of the results of the present paper to multidimensional cases. Still, 
the main limitation of the present version of our method is the fact that the 
method’s accuracy is limited by that the characteristic Bubnov-Galerkin method on 
the fine grid. This restricts possible applications to moderately small viscosity 
parameters E only, as has been reflected in the numerical examples in the preceding 
section. 

The question of how to deal with the case of very small E’S (say of order 10-6) is 
one of the possible directions in which generalizations might be sought. 

By introducing successively finer fine-grid approximations into the adaptive 
strategy, it may be possible to push the method to cases in which E is very small. 
Such generalizations may also involve strategies in which the number and location 
of grid points can vary with each time-step. These and other possibibilities require 
additional study. 
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